Copied to
clipboard

G = C23.23D14order 224 = 25·7

4th non-split extension by C23 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.23D14, D14⋊C42C2, (C22×C4)⋊3D7, Dic7⋊C43C2, (C22×C28)⋊2C2, (C2×C14).37D4, C14.42(C2×D4), (C2×C4).65D14, C23.D76C2, C14.18(C4○D4), C2.18(C4○D28), (C2×C14).47C23, (C2×C28).78C22, C22.9(C7⋊D4), C74(C22.D4), (C22×D7).9C22, C22.55(C22×D7), (C22×C14).39C22, (C2×Dic7).15C22, C2.6(C2×C7⋊D4), (C2×C7⋊D4).6C2, SmallGroup(224,124)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23.23D14
C1C7C14C2×C14C22×D7C2×C7⋊D4 — C23.23D14
C7C2×C14 — C23.23D14
C1C22C22×C4

Generators and relations for C23.23D14
 G = < a,b,c,d,e | a2=b2=c2=1, d14=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd13 >

Subgroups: 302 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C22.D4, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, Dic7⋊C4, D14⋊C4, C23.D7, C2×C7⋊D4, C22×C28, C23.23D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22.D4, C7⋊D4, C22×D7, C4○D28, C2×C7⋊D4, C23.23D14

Smallest permutation representation of C23.23D14
On 112 points
Generators in S112
(1 78)(2 79)(3 80)(4 81)(5 82)(6 83)(7 84)(8 57)(9 58)(10 59)(11 60)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 95)(30 96)(31 97)(32 98)(33 99)(34 100)(35 101)(36 102)(37 103)(38 104)(39 105)(40 106)(41 107)(42 108)(43 109)(44 110)(45 111)(46 112)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)
(1 52)(2 53)(3 54)(4 55)(5 56)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(27 50)(28 51)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14 38 51)(2 50 39 13)(3 12 40 49)(4 48 41 11)(5 10 42 47)(6 46 43 9)(7 8 44 45)(15 28 52 37)(16 36 53 27)(17 26 54 35)(18 34 55 25)(19 24 56 33)(20 32 29 23)(21 22 30 31)(57 96 111 70)(58 69 112 95)(59 94 85 68)(60 67 86 93)(61 92 87 66)(62 65 88 91)(63 90 89 64)(71 110 97 84)(72 83 98 109)(73 108 99 82)(74 81 100 107)(75 106 101 80)(76 79 102 105)(77 104 103 78)

G:=sub<Sym(112)| (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,95)(30,96)(31,97)(32,98)(33,99)(34,100)(35,101)(36,102)(37,103)(38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94), (1,52)(2,53)(3,54)(4,55)(5,56)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,38,51)(2,50,39,13)(3,12,40,49)(4,48,41,11)(5,10,42,47)(6,46,43,9)(7,8,44,45)(15,28,52,37)(16,36,53,27)(17,26,54,35)(18,34,55,25)(19,24,56,33)(20,32,29,23)(21,22,30,31)(57,96,111,70)(58,69,112,95)(59,94,85,68)(60,67,86,93)(61,92,87,66)(62,65,88,91)(63,90,89,64)(71,110,97,84)(72,83,98,109)(73,108,99,82)(74,81,100,107)(75,106,101,80)(76,79,102,105)(77,104,103,78)>;

G:=Group( (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,57)(9,58)(10,59)(11,60)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,95)(30,96)(31,97)(32,98)(33,99)(34,100)(35,101)(36,102)(37,103)(38,104)(39,105)(40,106)(41,107)(42,108)(43,109)(44,110)(45,111)(46,112)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94), (1,52)(2,53)(3,54)(4,55)(5,56)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14,38,51)(2,50,39,13)(3,12,40,49)(4,48,41,11)(5,10,42,47)(6,46,43,9)(7,8,44,45)(15,28,52,37)(16,36,53,27)(17,26,54,35)(18,34,55,25)(19,24,56,33)(20,32,29,23)(21,22,30,31)(57,96,111,70)(58,69,112,95)(59,94,85,68)(60,67,86,93)(61,92,87,66)(62,65,88,91)(63,90,89,64)(71,110,97,84)(72,83,98,109)(73,108,99,82)(74,81,100,107)(75,106,101,80)(76,79,102,105)(77,104,103,78) );

G=PermutationGroup([[(1,78),(2,79),(3,80),(4,81),(5,82),(6,83),(7,84),(8,57),(9,58),(10,59),(11,60),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,95),(30,96),(31,97),(32,98),(33,99),(34,100),(35,101),(36,102),(37,103),(38,104),(39,105),(40,106),(41,107),(42,108),(43,109),(44,110),(45,111),(46,112),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94)], [(1,52),(2,53),(3,54),(4,55),(5,56),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(27,50),(28,51),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14,38,51),(2,50,39,13),(3,12,40,49),(4,48,41,11),(5,10,42,47),(6,46,43,9),(7,8,44,45),(15,28,52,37),(16,36,53,27),(17,26,54,35),(18,34,55,25),(19,24,56,33),(20,32,29,23),(21,22,30,31),(57,96,111,70),(58,69,112,95),(59,94,85,68),(60,67,86,93),(61,92,87,66),(62,65,88,91),(63,90,89,64),(71,110,97,84),(72,83,98,109),(73,108,99,82),(74,81,100,107),(75,106,101,80),(76,79,102,105),(77,104,103,78)]])

C23.23D14 is a maximal subgroup of
C22⋊C4⋊D14  C42.277D14  C24.27D14  C24.31D14  C14.2- 1+4  C14.52- 1+4  C14.62- 1+4  C4210D14  C42.96D14  C42.104D14  C4216D14  C42.113D14  C42.114D14  C4217D14  C42.115D14  C42.116D14  C42.118D14  C14.422+ 1+4  C14.442+ 1+4  C14.482+ 1+4  C14.492+ 1+4  C14.202- 1+4  C14.222- 1+4  C14.582+ 1+4  C14.262- 1+4  C14.792- 1+4  C4⋊C4.197D14  D7×C22.D4  C14.1202+ 1+4  C4⋊C428D14  C14.852- 1+4  C24.72D14  C247D14  C14.442- 1+4  C14.1042- 1+4  C14.1452+ 1+4
C23.23D14 is a maximal quotient of
(C2×C42).D7  (C2×C42)⋊D7  C24.9D14  C24.14D14  (C2×C14).40D8  C4⋊C4.228D14  C4⋊C4.230D14  C4⋊C4.231D14  (C2×C28).287D4  (C2×C28).288D4  (C2×C28).289D4  (C2×C28).290D4  C4⋊C4.233D14  C4⋊C4.236D14  C24.62D14  C24.63D14  C23.28D28

62 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C14A···14U28A···28X
order1222222444444477714···1428···28
size1111222822222828282222···22···2

62 irreducible representations

dim1111112222222
type++++++++++
imageC1C2C2C2C2C2D4D7C4○D4D14D14C7⋊D4C4○D28
kernelC23.23D14Dic7⋊C4D14⋊C4C23.D7C2×C7⋊D4C22×C28C2×C14C22×C4C14C2×C4C23C22C2
# reps122111234631224

Matrix representation of C23.23D14 in GL4(𝔽29) generated by

28000
02800
00280
00241
,
28000
02800
00280
00028
,
1000
0100
00280
00028
,
28100
28200
00120
00217
,
12800
22800
00121
00217
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,24,0,0,0,1],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[28,28,0,0,1,2,0,0,0,0,12,2,0,0,0,17],[1,2,0,0,28,28,0,0,0,0,12,2,0,0,1,17] >;

C23.23D14 in GAP, Magma, Sage, TeX

C_2^3._{23}D_{14}
% in TeX

G:=Group("C2^3.23D14");
// GroupNames label

G:=SmallGroup(224,124);
// by ID

G=gap.SmallGroup(224,124);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,217,218,86,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^14=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^13>;
// generators/relations

׿
×
𝔽